
International Journal of Theoretical Physics, Vol. 32, No. 5, 1993 

Bianehi Type III Foliation of the de Sitter Space 
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We show that the de Sitter space can be foliated into spacelike hypersurfaces 
with locally rotationally symmetric Bianchi type III properties. This proves as 
well that a particular Bianchi, type III solution is isotropic. In addition, we apply 
a criterion of isotropy, based on the vanishing of the Weyl tensor, which is 
particularly suited for cosmological models where there is not a preferred timelike 
vector field. 

The de Sitter space is a maximally symmetric spacetime, where there is 
not a preferred timelike direction (Weinberg, 1972; Ryan and Shepley, 1975). 
This fact should allow us to define different types of  spacelike foliations. It  
is well known that the de Sitter space can be represented in all the three 
standard forms of the Rober tson-Walker  spacetimes. In addition, Torrence 
and Couch (1988) have shown that the de Sitter space also admits foliations 
of  the Kantowski-Sachs type. Therefore, it will be important to find out 
whether the de Sitter space admits other foliations, with different properties 
from the ones mentioned above. 

We present a particular locally rotationally symmetric (LRS) Bianchi 
type I I I  model (Collins, 1977; MacCallum, 1979a, b) with a cosmological 
constant. It will be shown below that this Bianchi type I I I  solution is a 
portion of the de Sitter space and hence it is isotropic. However, this isotropic 
solution has a nonzero shear tensor. Such a conflicting situation also arises 
between some results due to Grcn  (1986) and to Torrence and Couch (1988) 
on an empty Kantowski-Sachs universe with a cosmological constant. The 
right interpretation lies in the fact that for specific cases the shear tensor of  
the normal congruence to the homogeneous hypersurfaces cannot provide 
reliable information about the degree of  isotropy. Such situations occur 
when a preferred timelike direction field does not exist. Consequently, we 
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have proposed (Crawford and Vargas Moniz, 1992a, b) a frame-independent 
requirement to evaluate the isotropy based on the vanishing of the Weyl 
tensor. This criterion is discussed here. We calculate as well the Killing 
vectors which form the Lie algebra of the isometry group of this LRS Bianchi 
type III solution and find that there are ten. Only four of the ten Killing 
vectors generate symmetries on the hypersurfaces {t = const}. Thus, this case 
corresponds rather to a Bianchi type III foliation of the de Sitter space, as 
will be shown. 

As a starting point for our discussion, let us write the family of LRS 
Bianchi type III metrics as 

ds 2 = - dt 2 + A 2(t) dr 2 + B 2(t) [dO 2 + sinh 2 0 d~02] ( 1 ) 

We are interested in metrics (1) which satisfy the Einstein equations 

Rao = Agab; A > 0 (2) 

Note that any solution which satisfies equation (2) is also designated as an 
Einstein space, where the de Sitter space is only a particular case (Rindler, 
1979). The Einstein equations (2) for the metric (1) are 

6,2- 1 
2 J J - ~  - A  (31 

A B  B 2 

2 - ~  - - - A  (4) 
B B 2 

2 ~ Ji~ 
- + - + - - = A  (5) 
A B A B  

Integration of equation (4) gives 

where C is a constant of integration. Putting C = 0, integrating once more, 
and since (3) and (4) imply A(t)ocj ,  it is straightforward to obtain 

A(t) = 1 cosh(Hot), B( t )  = l sinh(Hot) (7) 
H0 H0 

where H0 = (A/3) v2. This case describes a universe that emerges from a cigar 
singularity' B ~ 0, A ~ A0 > 0 as t ~ 0. The general solutions of equations 
(l), (2) can be found in Stewart and Ellis (1968), Cahen and Defrise (I968), 
Mossiaux et al. (1981), MacCallum et al. (1982), and Lorenz (1982, 1983). 
The particular solution (1), (7) was communicated by Baofa (1991), but 
unfortunately it was announced as a Kantowski-Sachs universe model. The 
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Kantowski-Sachs case was previously reported by Grcn (1986). The LRS 
Bianchi type III universe (1), (7) has a volume expansion given by 

| = A +  2 B = Ho[tanh(Hot) + 2 coth(Hot)] (8) 
A B 

and the shear invariant ry (~2= �89 r~0ry~ ) is 

ry ,,fi \A  B /  xfi sinh(2Hot) (9) 

The volume expansion (8) tends toward 3//o and the shear decays exponen- 
tially toward zero when Hot>> 1. 

The solution (t),  (7) has, however, a six-parameter isotropy group 
defined at every point and hence it is isotropic. This is shown as follows. 
The de Sitter space $4 (Rindler, 1979) is defined through the hypersurface 

X2+ y Z + z 2 +  W 2 _ ~ 2 = a 2  (10) 

embedded in the 5-dimensional Minkowski spacetime Ms, 

ds 2 = - d T  2 + dX 2 + d Y  2 + dZ  2 + d W  2 (11) 

where a = Ho I . Using the coordinates defined by 

X--= a sinh 0 cos $ tan T 

Y= a sinh 0 sin ~b tan T 

Z-= a cos R sec T (12) 

W= a sin R sec T 

T= a cosh 0 tan T 

we find that the de Sitter metric induced by this embedding becomes 

1 
ds z= - [ - d T 2 + d R ~ + c o s  T (d02+ sinh 0 d~2)] (13) 

sin T 

The introduction of  a new cosmic time t defined by 

1 + sin T 
- -  - e  t/~ ( 1 4 )  

cos T 

gives the metric 

ds 2= - d t  2+ a2 sinh2(t/a) dR2+ a 2 cosh2(t/a) [dO2+ sinh 2 0 d~b 2] (15) 

This is the metric form (1) with the scale factors given by (7). Thus, the 
solution (7) is isotropic as it is mapped into the de Sitter space. 
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In order to classify the universe described by equations (1), (7) accord- 
ing to its intrinsic geometrical properties, we compute its Killing vectors. 
Following the guidelines in Crawford and Vargas Moniz (1992b), we find 
ten Killing vectors, namely, 

KI --- cos ~b ~ -  coth 0 sin ~ ~ (16) 
a0 0~ 

K2 = sin q~ 9 _ +  coth 0 cos ~b 0 (17) 
00 0~ 

/(3 = a cosh 0 cos r - - -  cosh 0 sin 
Ot \a/  Or 

- s inh  0 cos r c o d - ' ) •  (lS) 
\a /  00 

K4= a sin r c~ O O--+ c~ O c~ r tanh( t ) Or 

- sinh 0 sin r coth 00 

Ks=~ (20) 

/(6 = - a sinh 0 sin q~ cosh r  L +  sinh 0 sin ~b sin r t a n h ( t ]  
o 

Ot \a/  Or 

+ cosh 0 sin q~ cos r tanh 00 

1 cosrcoth(tt O_ (21) + cos q~ 
sinh 0 \a/Oq5 

a 0 (22) /(7-~ COS ~ b - - - - c o t  0 sin q ~ -  
a0 ~ 

0 
Ks = - a sinh 0 cos $ sin r - - -  sinh 0 cos ~b cos r tanh t 

Ot \a/  Or 

+ cosh 0 cos ~b sin r coth O0 

1 sin ~sinrcoth(t l  0-~- ( 2 3 )  
sinh 0 a 
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/(9 = - a sinh 0 sin r sin r O ~ -  sinh 0 sin r cos r tanh |  -t ] [ \  L 
Ot \a /  Or 

1 
+cosh 0 sin ~b sin r coth t - - +  cos ~ sin r coth (24) 

O0 sinh 0 

0 
/s - (25) 

Or 

It is not difficult to verify that all these vector fields are linearly indepen- 
dent and are all solutions of Killing's equation 

5ax~A~g = 0 

for the metric (15), where ~ stands for the Lie derivative. As expected, the 
space represented by this metric admits a maximal group Glo of isometries. 
The symmetries of the 3-surfaces {t--const} are generated only by the subal- 
gebra formed by the four Killing vectors {KI,/(2, Ks,/s More exactly, 
{K1, Kz, Ks} generate the subalgebra of a G3 VIII that acts multitransitively 
on the two-dimensional orbits dO2+ sinh 2 0 dtp a on which {t, r = const}. The 
Killing vector field Kl0 is the generator of the spatial translations and it must 
be nonnull everywhere so that the orbits of G4 ~be three-dimensional. Also, 
from the Jacobi identities it follows that [Kl0, K~] =0, where i=  1, 2, 5. The 
Bianchi III type Lie subalgebra, of the G3 subgroup that acts transitively on 
the homogeneous hypersurfaces {t = const}, is made up by the Killing vector 
fields { K~, K2 + Ks, K~o}. This proves our point that the metric (15) can only 
represent a foliation of de Sitter space of an LRS Bianchi III type. 

The apparent conflict between a nonzero shear solution which is maxi- 
mally symmetric, and therefore has a six-parameter isotropy group at every 
point, has been cleared up by the present authors (Crawford and Vargas 
Moniz, 1992a, b). In what follows we present a brief explanation. The shear 
tensor changes according to the different frames we may choose to depict 
the different foliations. Thus, when a preferred timelike direction cannot be 
selected, the shear criterion is dubious and might insinuate a misleading 
interpretation of isotropy. The applicability of the shear tensor should be 
restricted to spacetimes with a preferred timelike vector field, like the ones 
with a perfect fluid matter content. In the present case (an Einstein space) 
we can choose different but completely equivalent timelike directions, in the 
sense that all observers will measure the same constant A. In particular, 
there must exist at least one particular frame where the shear will be zero. 
Hence, the exponential decay of the shear when Hot>> 1 does not represents 
an isotropization from a shear-dominated Bianchi type III universe toward 
the isotropic de Sitter space $4: the solution (1), (7) is actually (a portion 
of) the de Sitter space, i.e., it is already isotropic. 
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As far as the shear is concerned, it gives valuable information about 
the specific foliation. The model with metric (1), (7) constitutes a de Sitter 
space where a particular timelike direction was introduced. Observers whose 
worldlines are the integral curves of the vector field O/Ot observe a universe 
(1), (7) with a nonzero shear tensor. In this sense, we could say that the 
foliation is spatially anisotropic, but not the solution. Thus, the appropriate 
classification of the solution (7) is a spatially anisotropic (nonzero shear) 
foliation of tile expanding de Sitter universe in a rather bizarre coordinate 
frame (of the LRS Bianchi III type) which conceals its intrinsic geometric 
properties. 

Complying with the standard definition of isotropy (Wald, 1984), we 
ought to have a frame-independent criterion. Thus, we proposed (Crawford 
and Vargas Moniz, 1992a, b) that the relevant requirement in terms of iso- 
tropy is the vanishing of the Weyl tensor, as it is independent of the particular 
spacetime foliation. This proves to be of particular relevance for studying 
the isotropy of spaces where a preferential timelike vector field does not exist. 
The Weyl tensor for the metrics (1), (2) vanishes if and only if (Crawford and 
Vargas Moniz, 1992a, b) 

.~B B~-  I 
A B  B z 

=0 (~6) 

This equation is satisfied only for A and B given by (7). This also proves 
that the solution (7) is the unique isotropic LRS Bianchi type III spacetime. 
All the other solutions (C:~ 0) are unequivocally anisotropic. We also remark 
that the Riemann curvature components Rc~ for the metric (1), (7) are all 
identical, which indeed confirms that this solution represents a spacetime of 
constant curvature. 

Summarizing, our purposes have been twofold. On the one hand, our 
calculations show that the de Sitter space can be foliated into spacelike 
hypersurfaces with LRS Bianchi type III properties. Moreover, we identified 
the unique LRS Bianchi type III solution that can be mapped in the de Sitter 
space, and hence it is isotropic. On the other hand, an alternative criterion 
of isotropy of spaces was applied here. This requirement is particularly 
relevant when a preferred timelike vector field cannot be defined at all. 
Instead of the quite common criterion of a vanishing shear tensor, or, more 
specifically, or~| -~ O, which depends on the choice of the timelike direction, 
we required the vanishing of the Weyl tensor. 

Einstein spaces [cf. equation (2)] can be considered as "vacuum- 
dominated" universes, where a preferred timelike vector field cannot be 
defined. This type of situation is interesting from the point of view of cosmol- 
ogical models which develop toward an inflationary stage of a de Sitter type. 
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In the case where the matter content is insignificant, the shear tensor of 
the normal congruence to the homogeneous hypersurfaces cannot provide 
reliable information about the degree of isotropy. Consequently, we used a 
frame-independent requirement to evaluate the isotropy, that is, the vanish- 
ing of the Weyl tensor. An Einstein space with a null Weyl tensor is a 
maximally symmetric spacetime, and thus it is isotropic. 

Finally, it is interesting to note that the known de Sitter space foliations 
(including the one herewith described) are characterized by spacelike hyper- 
surfaces of constant curvature. The foliations of the Robertson-Walker type 
correspond to 3-dimensional hypersurfaces of constant positive, negative, 
and zero curvature and the foliations of the Kantowski-Sachs and LRS 
Bianchi type III correspond to 2-dimensional surfaces of positive and nega- 
tive curvature, respectively. Furthermore, applying the null Weyl criterion 
to the LRS Bianchi type I model, one gets the flat Robertson-Walker case. 
Hence, it will be interesting to study if the de Sitter space only admits 
foliations into spacelike hypersurfaces of constant curvature. If that is the 
case, what are the several possibilities to accomplish such a situation? This 
query will be analyzed in a future report. 
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